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String Lanscape: 
Plenitude (‘          ‘) of vacua  � 10500

Ultimate Unification of!
Fundamental Physics and Geography





Standard Model

Hidden Valley I

Hidden Valley II

In both cases no reasons to apply 
Occam’s razor!



Expect to see more structures of the type we 
already saw: 

✦ Gauge sectors
Theory: Abundantly come from stacks of D-branes wrapping 
cycles in the compactification manifold

Observations: SU(3)xSU(2)xU(1)

✦ Axions
Theory: Abundantly come from zero modes of !
higher-dimensional gauge fields in the presence of cycles

Observations: Strong CP problem provides a tantalizing hint



Landscape geography implies new search 
strategies for new physics: 

✦New physics can be (exponentially) light:

Axions are gauge fields in disguise. Not massless due to!
non-perturbative (Aharonov-Bohm) effect.

✦And very weakly (gravitationally) coupled to us

Consequence of geographic separation



Theorist’s detector for light axions: 

SD, Arvanitaki, Dimopoulos, Kaloper, March-Russel 
SD, Arvanitaki 

LMC X-1
10M� , a/Rg ' 0.91

!

for the QCD axion translates into

ma & 2 · 10�11 eVma & 2 · 10�11 eV

!
fa . 3 · 1017 GeV



Black Hole Superradiance

Ergoregion

Rotating Black Hole

Penrose Process Penrose; Zeldovich; 
Misner; Starobinsky



Black Hole Superradiance

Extracts angular momentum and mass from a spinning black hole 

Ergoregion

Rotating Black Hole

Penrose Process Penrose; Zeldovich; 
Misner; Starobinsky



Black Hole Bomb

Photons reflected back and forth from the black hole  
and through the ergoregion

Press & Teukolsky  



Black Hole Bomb

Photons reflected back and forth from the black hole  
and through the ergoregion

Press & Teukolsky  



Superradiance for a massive boson

Particle Compton Wavelength comparable to the size of the Black Hole

Penrose Process  Damour et al; Gaina et al.; 
  Detweiler; Zouros & Eardley; 
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Gravitational Atom in the Sky

Occupation number

Away from the Black Hole: Newtonian Potential 

The gravitational Hydrogen Atom

fermions �� bosons

1 �� 1075

�EM =
e2

4�
�� � = GNMBHµa = Rgµa

Ebinding = ��2
EMme

2n2
�� Ebinding = ��2µa

2n2



Spin Gap for the QCD Axion

ma=5x10-12eV, fa=1018GeV
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Spin Gap for the QCD Axion

ma=2x10-11eV, fa=3x1017GeV
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Combined Exclusion plot

QCD a
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 Arvanitaki, Baryakhtar, Huang,  
to appear 



Bose Einstein Condensate in a Trap
The effect of attractive self-interactions

Etrap ~  Einter.

The Bosenova

Happens when
Mcloud

MBH

� f2
a

M2
Planck

l2

�2
� 10�4

Repeats 10-100 times  
Wait 103-104 τsr to stop superradiating

http://www.nist.gov/public_affairs/bosenova.htm

http://www.nist.gov/public_affairs/bosenova.htm
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What about signals, rather then 
exclusions ?

✦Gravitational waves from the cloud.  !
Advanced LIGO has chances to become !
a discovery machine for the QCD axion.

✦Electromagnetic signals ?!
The hope is that inside the cloud               .!
This is a very different QCD !

✓QCD ⇠ 1



Electromagnetic Signals: Echoes of Hidden Valleys

SD, GorbenkoSetup:
✦Axion, coupled to QCD-like sector.!
At least 3 light quark flavors with close masses.!
Pure glue also may work.

!

2 Phase Structure of Hidden Valleys

To illustrate how an adiabatic change of a ✓-parameter can trigger a phase transition in a strongly
coupled gauge sector, let us consider SU(Nc) QCD-like gauge theory with N light quark flavors
(this section is mostly a summary of well-known facts, an incomplete list of original references
include [20, 21, 22]). In this case all the relevant dynamics can be analyzed in a weak coupling
regime using the low energy chiral Lagrangian. Indeed, from the chiral perturbation theory we
get the following e↵ective Lagrangian

L =
F 2
⇡

4
Tr @U †@U +

⇤3

2
Tr

�
Me�i✓/NU +Mei✓/NU †� , (1)

where U 2 SU(N) are pions, M is the quarks mass matrix and the pion decay constant F⇡ is of
the same order as the QCD scale ⇤. With appropriate field redefinitions one can always make M
real and diagonal, M = diag{m1,m2 . . .mN}, with

m1 � m2 � . . .mN > 0 . (2)

All masses are assumed to be much smaller than the dynamical QCD scale ⇤ 1.
Let us study the extrema of the potential (1); our main interest is to follow the dependence

on the CP-violating phase ✓. As we show in the Appendix, one can always search for extrema in
the diagonal form, U = ei✓/Ndiag{ei�1 , ei�2 , . . . e�N}, with

NX

i

�i = �✓ + 2⇡k , (3)

where �i 2 [�⇡, ⇡) and k is an integer. With this diagonal Ansatz the pion potential becomes

V (�i) = �⇤3
NX

i

micos�i . (4)

The extremality conditions for the potential (4) are simply

misin�i = mjsin�j, (5)

for any pair i, j, plus the constraint (3). For each value of ✓ this set of equations has various
solutions which correspond to di↵erent type of extrema — minima, maxima and saddle points.

To determine conditions for an extremum to be a local minimum let us consider the Hessian
matrixM↵� using �1, . . . ,�N�1 as independent variables, so that indices ↵, � run from 1 to (N�1),

M↵� = �↵�m↵ cos�↵ +mN cos�N , (6)

where no summation over ↵ is assumed. Then it follows from Eqs. (2), (5) that a necessary
condition for a local minimum is cos�↵ > 0, ↵ = 1, . . . , N � 1. Moreover, if also cos�N > 0

1
Strictly speaking, in the large Nc regime, one needs mi ⌧ ⇤/Nc for the description (1) to hold, otherwise one

should also include the ⌘0 meson in the low energy theory.

3

Effective action describing axion and mesons:

✦Some portal, allowing for hidden pions to annihilate 
into SM. Simplest example: dark photon with kinetic 
mixing.
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Figure 1: Extrema of the axion potential at N = 3 for equal quark masses (left), and for mass
ratios 1:1.2:1.4 (right).

referred to as axion monodromy. Even at equal masses this name is a bit misleading—as we see
on the way from 0 to 2⇡ extrema change their nature and turn from minima into maxima and
vice versa. Fig. 1a demonstrates that for non-degenerate masses something even more dramatic
happens—there are branches of extrema that are not defined over all range of ✓ from 0 to 2⇡. Of
course, the physics is still periodic under 2⇡ shifts of ✓—the sets of extrema at ✓ and ✓ + 2⇡ are
identical.

Note that the two minima have equal energies at ✓ = ⇡ both for di↵erent and degenerate
masses. This is not a coincidence, but rather a consequence of the 2⇡-periodicity in ✓ and of
✓ ! �✓ reflection symmetry.

Let us estimate now the life-time of metastable minima in the pion potential. As usual the
probability of tunneling is determined by the classical bounce action, � / e�S [23, 24]. It is clear
that the tunneling probability becomes large for ✓ close to ✓c, where the height of the barrier goes
to zero. Indeed the relevant part of the pion Lagrangian at ✓ ⇠ ✓c can be written in the form

L ' F 2
⇡

2
(@�)2 �m⇤3

�
M2(✓)�2 � ��3 + . . .

�
, (10)

where M2(✓c) = 0, � is a linear combination of pions �i that becomes massless at ✓ = ✓c, and �
is a constant. Dots in (10) stand for corrections which are higher order in � and/or in (✓ � ✓c).
These terms can be neglected at ✓ ⇠ ✓c when the bounce solution is localized near � = 02. In this
limit the tunneling rate becomes [25]

� ⇠ exp

✓
�91

2

M2(✓)

�2

F 4
⇡

m⇤3

◆
, (11)

2
The cubic coupling � can turn zero at some special values of quark masses. In this case one has to include

the quartic self-interaction to calculate the bounce action. This will change some of our formulas but not the

conclusions.

5
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Superradiance puts QCD’ in an overheated state.!
Eventually, triggers a local phase transition, !
latent heat is released in the form of hidden hadrons. !
They may efficiently annihilate into photons/electrons. 



Figure 2: A total energy release as a function of a characteristic temperature of a fireball for
di↵erent values of parameters ↵ and l. Two red axes on top represent a corresponding black hole
mass and time scale for ↵ = 0.5, l = 1. For the blue line a black hole mass is 5 times larger than
the value on the red axis and a time scale is 5 times longer. For the green line a black hole is 5
times lighter and a time scale is ⇠ 51/3 times longer.

To produce this plot we assumed that the axion potential is dominated by the hidden sector,
so that T = ⇤µ with fa = 2 · 1016 GeV. The total energy release is determined either by (22) or
by the total mass of the axion cloud (23) depending on whether thermalization condition holds or
not. To check the latter we assumed that the mixing parameter ✏ takes the largest possible value
compatible with the observational bounds at the corresponding meson mass scale.

The reason we have three di↵erent curves on the plot is the following. In our previous estimates
we were assuming ↵ ⇠ l ⇠ 1. The three curves are meant to illustrate the uncertainties in the
estimates related to variations of these two parameters. The red solid curve on the plot corresponds
to l = 1 ↵ = 1/2, i.e., to ↵ ⇠ l ⇠ 1 regime5. The dependence on ↵ and l comes mainly from
two e↵ects. First, the size of the cloud scales as Rc ⇠ l

2
/↵, a↵ecting in turn the energy release

through expressions (22), (23) and through the Rc-dependence of the thermalization condition.
To illustrate this e↵ect we presented the blue dashed curve, corresponding to l = 5, ↵ = 2.5.

Yet another e↵ect enters when we vary ↵ and l, such that the ratio ↵/l changes as well.
Namely, as we already mentioned in section 3, the value of the ✓ parameter when the Bosenova
collapse starts was estimated in Ref. [10] to be proportional to ↵/l. Consequently, for small ↵/l

5
Recall that the superradiance condition implies that ↵/l < 1/2.
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Conclusions

✴New physics does not necessarily mean high 
energies.

✴Opens a window for new experimental and 
observational probes.


